Symbol Meaning
t Time
l
Wavelength
m
Molar concentration
J
Information efficiency function
f Indicates proportionality
w Indicates order of magnitude
References
[1] T.P. de Souza, P. Stano, P.L. Luisi, The minimal size of liposome-based model cells brings about
a remarkably enhanced entrapment and protein synthesis, ChemBioChem 10 (2009) 1056–1063.
[2] L. Brillouin, Science and Information Theory, Academic Press, New York, 1962.
[3] A.M. Yaglom, I.M. Yaglom, Probability and Information, D. Reidel, Boston, 1983.
[4] R.U. Ayres, Information, Entropy and Progress, AIP Press, New York, 1994.
[5] O. B-Ku
¨
ppers, Information and the Origin of Life, The MIT Press, 1990.
[6] H.R. Horton, L.A. Moran, R.S. Ochs, J.D. Rawn, K.G. Scrimgeour, Principles of Biochemistry, Prentice-
Hall, Inc, 1996.
[7] E. Smith, Thermodynamics of natural selection I: Energy flow and the limits on organization, J. Theoret.
Biol. 252 (2008) 185–187.
[8] W.W. Forrest, Entropy of microbial growth, Nature 225 (1970) 1165–1166.
[9] E. coli Statistics, University of Alberta, http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi
[10] The Microbial World, University of Wisconsin Madison, http://textbookofbacteriology.net/
themicrobialworld/nutgro.html
[11] A.M. Makarieva, V.G. Gorshkov, B.-L. Li, Energetics of the smallest: do bacteria breathe at the same rate
as whales? Proc. R. Soc B 272 (2005) 2219–2224 (ELECTRONIC APPENDIX).
[12] A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond.
Math. Soc. 42 (1936) 230–265; A.M. Turing, On computable numbers, with an application to the
Entscheidungsproblem - A correction, Proc. Lond. Math. Soc. 43 (1937) 544–546.
[13] N.G. Cooper, From Turing and von Neumann to the present, Los Alamos Science (Fall 1983) 22–27.
[14] J. von Neumann, Theory of Self-Reproducing Automata, Univ. of Illinois Press, 1966.
[15] J. von Neumann, The Computer and the Brain, Yale Univ. Press, 1959.
[16] V.V. Zhirnov, R.K. Cavin, Scaling beyond CMOS: Turing-Heisenberg rapprochement, Solid-State Electron
54 (2010) 810–817.
[17] V. Zhirnov, R. Cavin, G. Leeming, C. Galatsis, Assessment of integrated digital cellular automata
architectures, COMPUTER 41 (2008) 38–44.
[18] A. Danchin, Bacteria as computer making computers, FEMS Microbiol. Rev. 33 (2009) 3–26.
[19] G. Bate, Bits and Genes: A comparison of the natural storage of information in DNA and digital magnetic
recording, IEEE Trans. Magn. 14 (1978) 964–965.
[20] L.W. Parfrey, D.J.G. Lahr, L.A. Katz, The Dynamic Nature of Eukaryotic Genomes, Molecular Biol.
Evolut. 25 (2008) 787–794.
[21] D. Bray, Protein molecules as computational elements in living cells, Nature 376 (1995) 307–312.
[22] N. Ramakrishnan, U.S. Bhalla, J.J. Tyson, Computing with proteins, Computer 42 (2009) 47–56.
References 183

Get Microsystems for Bioelectronics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.