Chapter 2
OFDM Standards
During the past decades, wireless communication has benefitted from substantial advances and it is considered as the key enabling technique of innovative future consumer products. For the sake of satisfying the requirements of various applications, significant technological achievements are required to ensure that wireless devices have appropriate architectures suitable for supporting a wide range of services delivered to the users.
In the foreseeable future, the large-scale employment of wireless devices and the requirements of high-bandwidth applications are expected to lead to tremendous new challenges in terms of the efficient exploitation of the achievable spectral resources. New wireless techniques, such as Ultra WideBand (UWB) [356], advanced source and channel encoding as well as various smart-antenna techniques, e.g. Space–Time Codes (STCs) [314], Space-Division Multiple Access (SDMA) [3] and beamforming, as well as other Multiple-Input, Multiple-Output (MIMO) [92] wireless architectures, are capable of offering substantial improvements over classic communication systems. Hence researchers have focused their attention on the next generation of wireless broadband communications systems, which aim at delivering multimedia services requiring data rates much higher than existing ones. Undoubtedly, supporting such high data rates while maintaining a high robustness against radio channel impairments, such as multi-path fading and frequency-selective ...