Preface
The rationale and structure of this volume is centred around the following ‘story-line’. The conception of parallel transmission of data over dispersive channels dates back to the seminal paper of Doelz et al. published in 1957, leading to the OFDM philosophy, which has found its way into virtually all recent wireless systems, such as the Wi-Fi, WiMAX, LTE and DVB as well as DAB broadcast standards. Although MIMO techniques are significantly ‘younger’ than OFDM, they also reached a state of maturity and hence the family of recent wireless standards includes the optional employment of MIMO techniques, which motivates the joint study of OFDM and MIMO techniques in this volume.
The research of MIMO arrangements was motivated by the observation that the MIMO capacity increases linearly with the number of transmit antennas, provided that the number of receive antennas is equal to the number of transmit antennas. With the further proviso that the total transmit power is increased proportionately to the number of transmit antennas, a linear capacity increase is achieved upon increasing the transmit power. This is beneficial since, according to the classic Shannon–Hartley law, the achievable channel capacity increases only logarithmically with the transmit power. Thus MIMO-OFDM may be considered a ‘green’ transceiver solution.
This volume therefore sets out to explore the recent research advances in MIMO-OFDM techniques as well as their limitations. The basic types of multiple-antenna-aided ...