© Copyright IBM Corp. 2001 167
Index
A
addiction 140
aggregation 34, 37, 78, 134
AIX 154
algorithms 57
analysis
statistical 23
applications 28, 34
Attribute Visualizer 54, 128
automatic dialer 141
availability 59
Average Revenue Per Unit 120
B
BDR 85
behavior
service 110, 112
behavior measure 126
BI 1
Billing Detailed Record 85
bivariate statistics 40
business
issue 2, 29, 30, 49, 74, 110, 132
reporting tools 23
user 43
users 6, 75
Business Intelligence 1, 153
C
call 49
amount of calls 78
behavior 86, 132
charges 132
fraudulent 131, 137
frequency 78
inbound 66, 78, 86
minutes of calls 51, 78, 86
mobility 86
number of calls 51, 78
outbound 66, 67, 86
pattern of call 78
quality of call 78, 86
revenue 51
sphere of influence 86
transactions 56
call center 70, 106
Call Detailed Record 49, 133
calling behavior 50, 51
campaign 66, 69, 70, 74, 83, 103, 105, 130
categorical 59
CDR 49, 50, 54, 85, 133, 135, 144
challenges 41, 74, 111
channel 71
churn
75
filtering 76
indicator 77, 85
involuntary 76, 79
modeling process 91
pattern 82
prediction 73
probability 105
voluntary 79, 83
clusters 58, 61, 136, 137
optimum number 59
Condorcet 60
confidence 64, 143
connections
normal 137
conspiracy 132, 138
contract 125
correlation 39, 40
credit risk 110, 114, 119, 130
CRM 2, 47, 60, 69
cross-selling 110
Customer Relationship Management 2, 47, 58
customer value function 114
customers
abnormal behaviors 58
analysis 47
average spend per visit 25
behavior 39, 49, 57, 78, 111, 112, 130
characteristics 47, 50, 58
credit risk 111, 112
customer grade 51
customer value function 111
168 Mining Your Own Business in Telecoms Using DB2 Intelligent Miner for Data
future value 113
group 48, 57, 60
handset type 51
high call usage 64
high profitability 110
high service utilization 64
high weekend usage 48
life time value 111
likely to leave 73
low call usage 64
low revenue 110
low service utilization 64
night 65
occupation 49
profitability 66, 110, 112, 114
purchase 49
revenue 110, 112, 113
segmentation 28, 48
services 51
similar groups 50
teenage 66
true value 109, 110
value 120, 130
customized 146
CVF 111, 116, 118, 130
D
data
additional 50, 51, 58, 77, 79
aggregation 11
availability 54
behavior 50, 58, 114
billing 77, 79, 85
call 54, 77, 78, 85
calling behavior 54
churn indicator 77
clean up 147
cleansing 11, 34
connection 134
content 35
contract 77, 78, 85
customer indices 77
demographic 49, 50, 51, 54, 58, 77, 85
demographic data 35
derived 78, 79
description 35
distribution 54
evaluating 30, 39, 54, 86, 114, 135
extraction 10
filtering 148
financial 112, 113
historical 10, 73
input 59
key indices 79
model 29, 34, 36, 50, 52, 76, 77, 79, 84, 132,
146
payment 79
preparation 38, 147
preprocessing 36
propagation 10
refining 11
relationship data 35
sources 35, 36
sourcing 29, 53, 81, 113, 133
sourcing and pre-processing 36
summarization 11
transaction 49, 50
transactional 35
transactional data 35
transformation 10
type 35
usage 35
volumes 24, 34, 50
data engineering team 43
Data Mining Group 155
data mining techniques
associations 40
associations discovery 146
choosing 30, 40, 56, 89, 119, 136
classification 3, 28, 40, 146
clustering 3, 4, 27, 40, 48, 57, 58, 69, 85, 146
decision tree 28, 90, 92, 94
demographic clustering 57, 59, 85, 136
discovery 27
frequency analysis 28
linear regression 28, 90
link analysis 27
logistic regression 90
neural clustering 57, 58
neural network 56, 90, 103
neural network prediction 121
neural networks 153
neural prediction 28
polynomial regression 28, 90
prediction 3, 4, 27, 147
Radial Basis Function 90
Radial Basis Functions 28, 153
Index 169
RBF 28, 90, 92, 100, 121, 125
regression analysis 90
segmentation 56
sequential patterns 146
similar patterns 40
similar time sequences 40, 147, 153
tree classification 154
value prediction 28, 40
data sets 54, 113
test 84, 102
training 84
data sources
data warehouse 10
operational 15
data warehouse 34, 54, 85
architecture 8
data window 85
database
view 37
datamart 12, 34, 37
DB2 42
DB2 Intelligent Miner Scoring 42, 70, 130, 145, 153
decision makers 1
deviation 60
discount 66
discovery 57
discretization 56
discretize 147
distribution 128
distributions 39
E
eCommerce 153
error rate 95
error weighting 84, 92
external data 10
extraction 10
F
factor 60
flat file 53, 81
flat files 147
forecasting window 85
formula 120
fraud detection 28, 58, 131
fraudulent
behavior 144
G
gains chart 93, 103, 121
generic method 5, 23, 26
GUI 148, 155
guide 6, 23
guideline 5
H
hand set 125
historical data 10
hypotheses 25
I
IBM DataJoiner 146, 147
IBM DB2 Intelligent Miner for Data 145
IBM DB2 Intelligent Miner Scoring 105
IBM DB2 Universal Database 146, 147
IM for Data vii
IM Scoring 153
implementers 6
inconsistencies 39
INFORMIX 147
intervals 148
IT analyst 43
iterative 48
J
join 39, 148
K
key performance indicators 79
Kohonen Feature Map 57
L
lift 93, 103
linear regression 40
Linux 154
Linux/390 154
lower-case 147
LTV 111
M
mapping tables 10
market 48, 71, 73, 78, 113, 130
basket analysis 28, 40
marketing 48, 49, 56, 58, 64, 68, 69, 70, 73, 83,

Get Mining Your Own Business in Telecoms Using DB2 Intelligent Miner for Data now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.