168 Mining Your Own Business in Telecoms Using DB2 Intelligent Miner for Data
future value 113
group 48, 57, 60
handset type 51
high call usage 64
high profitability 110
high service utilization 64
high weekend usage 48
life time value 111
likely to leave 73
low call usage 64
low revenue 110
low service utilization 64
night 65
occupation 49
profitability 66, 110, 112, 114
purchase 49
revenue 110, 112, 113
segmentation 28, 48
services 51
similar groups 50
teenage 66
true value 109, 110
value 120, 130
customized 146
CVF 111, 116, 118, 130
D
data
additional 50, 51, 58, 77, 79
aggregation 11
availability 54
behavior 50, 58, 114
billing 77, 79, 85
call 54, 77, 78, 85
calling behavior 54
churn indicator 77
clean up 147
cleansing 11, 34
connection 134
content 35
contract 77, 78, 85
customer indices 77
demographic 49, 50, 51, 54, 58, 77, 85
demographic data 35
derived 78, 79
description 35
distribution 54
evaluating 30, 39, 54, 86, 114, 135
extraction 10
filtering 148
financial 112, 113
historical 10, 73
input 59
key indices 79
model 29, 34, 36, 50, 52, 76, 77, 79, 84, 132,
146
payment 79
preparation 38, 147
preprocessing 36
propagation 10
refining 11
relationship data 35
sources 35, 36
sourcing 29, 53, 81, 113, 133
sourcing and pre-processing 36
summarization 11
transaction 49, 50
transactional 35
transactional data 35
transformation 10
type 35
usage 35
volumes 24, 34, 50
data engineering team 43
Data Mining Group 155
data mining techniques
associations 40
associations discovery 146
choosing 30, 40, 56, 89, 119, 136
classification 3, 28, 40, 146
clustering 3, 4, 27, 40, 48, 57, 58, 69, 85, 146
decision tree 28, 90, 92, 94
demographic clustering 57, 59, 85, 136
discovery 27
frequency analysis 28
linear regression 28, 90
link analysis 27
logistic regression 90
neural clustering 57, 58
neural network 56, 90, 103
neural network prediction 121
neural networks 153
neural prediction 28
polynomial regression 28, 90
prediction 3, 4, 27, 147
Radial Basis Function 90
Radial Basis Functions 28, 153