GANs, which were introduced by Ian Goodfellow, Yoshua Bengio, and others in NeurIPS 2014, took the world by storm. GANs, which can be applied to all sorts of domains, generate new content or sequences based on the model's learned approximation of real-world data samples. GANs have been used heavily for generating new samples of music and art, such as the faces shown in the following image, none of which existed in the training dataset:
The amount of realism that's present in the preceding faces demonstrates ...