Chapter 6Optimization Approaches in Distributed Embedded Wireless Sensor Networks*
Embedded wireless sensor networks (EWSNs) are distributed embedded systems consisting of embedded sensor nodes with attached sensors to sense data about a phenomenon and communicate with neighboring sensor nodes over wireless links (we refer to wireless sensor networks (WSNs) as EWSNs since sensor nodes are embedded in the physical environment/system). Due to advancements in silicon technology, micro-electro-mechanical systems (MEMS), wireless communications, computer networking, and digital electronics, distributed EWSNs have been proliferating in a wide variety of application domains. These application domains include military, health, ecology, environment, industrial automation, civil engineering, and medical, to name a few. This wide application diversity combined with complex embedded sensor node architectures, functionality requirements, and highly constrained and harsh operating environments makes EWSN design very challenging.
One critical EWSN design challenge involves meeting application requirements such as lifetime, reliability, throughput, and delay (responsiveness) for a myriad of application domains. Furthermore, EWSN applications tend to have competing requirements, which exacerbate design challenges. For example, a high-priority security/defense system may have both high responsiveness and long lifetime requirements. The mechanisms needed for high responsiveness typically drain ...
Get Modeling and Optimization of Parallel and Distributed Embedded Systems now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.