Molecular Spectrocopy,1e

Book description

Designed for undergraduate and postgraduate students of chemistry and physics,

Table of contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. Preface
  6. About the Authors
  7. 1. Introduction
    1. 1.1 Spectroscopy
    2. 1.2 Nature of Electromagnetic Radiations
    3. 1.3 Characteristics of Electromagnetic Radiations and Atoms/Molecules
    4. 1.4 Born-Oppenheimer Approximation
    5. 1.5 Schrödinger Wave Equation
    6. 1.6 General Condition of Resonance, i.e. Absorption or Emission
    7. 1.7 Molecular Spectroscopy and Spectral Regions
    8. 1.8 Spectrum and Basic Elements of a Single and Double Beam Absorption Spectrometer
      1. 1.8.1 Signal to Noise Ratio
      2. 1.8.2 Resolving Power of a Spectrometer and Its Relation to Slit Width
      3. 1.8.3 Width of the Spectral Lines and Factors Affecting It
    9. 1.9 Intensity of the Spectral Bands (or Quantum Mechanical Treatment of Transition Between Two States)
      1. 1.9.1 The Transition Probability
      2. 1.9.2 Boltzmann Distribution Law and Population in Energy States
      3. 1.9.3 Average Lifetime of the Excited State
      4. 1.9.4 Concentration and Path Length of Sample
    10. 1.10 Limit of Sensitivity of the Spectroscopic Method of Identification of Substances
    11. 1.11 Fourier Transform (FT) and Computer Average Transient (CAT)
    12. 1.12 Fitting of a Straight Line and Method of Least Squares
    13. Problems
    14. Appendix A-1.1
  8. 2. Atomic Structure and Atomic Spectra
    1. 2.1 Introduction
    2. 2.2 History and Experimental Results of Atomic Spectrum
      1. 2.2.1 Experimental Evidence for the Existence of Excited Levels in the Atom
      2. 2.2.2 Spectra of Alkali Metals
    3. 2.3 Quantum Mechanical Model of Atom
      1. 2.3.1 Hydrogen Atom
    4. 2.4 Fine (Multiplet) Structure of Atomic Terms (States)
      1. 2.4.1 Atom (Ion) with One Outer Electron
      2. 2.4.2 Fine Structure of the Terms of an Atom (Ion) with Two Outer Electrons
      3. 2.4.3 Designations (Fuller Characterisation) of Atomic Terms
      4. 2.4.4 Terms of Atoms with Any Number of Electrons
    5. 2.5 Hyperfine Structure of Spectral Terms
      1. 2.5.1 Lande Interval Rule
    6. 2.6 Genesis of the Periodic System of Elements
    7. 2.7 Intensity of Spectral Lines
      1. 2.7.1 Selection Rules
      2. 2.7.2 Breakdown of Selection Rules
      3. 2.7.3 Intensity Rules
    8. 2.8 Atomic Spectra
      1. 2.8.1 Atomic Spectrum of Hydrogen Atom
      2. 2.8.2 Atomic Spectra of Alkali Elements (One-Electron System)
      3. 2.8.3 Spectrum of Helium Atom (Two-Electron System)
      4. 2.8.4 Spectrum of Mercury Atom (Two Electron System)
    9. 2.9 An Atom in Magnetic Field
      1. 2.9.1 Normal Zeeman Effect
      2. 2.9.2 Anomalous Zeeman Effect
      3. 2.9.3 Paschen–Back Effect
      4. 2.9.4 Breakdown of ΔS = 0 Selection Rule and the Paschen–Back Effect
    10. 2.10 An Atom in Electric Field (Stark Effect)
      1. 2.10.1 Linear Stark Effect (Hydrogen Atom)
    11. Problems
  9. 3. Rotational Spectrum
    1. 3.1 Introduction
    2. 3.2 Rotational Motion of Dumbbell-Shaped Species (or Diatomic Molecule as Rigid Rotator)
    3. 3.3 Quantum Restrictions on Rotation of Diatomic Molecule
      1. 3.3.1 Rotational Angular Momentum
      2. 3.3.2 Rotational Energy Levels
    4. 3.4 Rotational Spectrum and Bond Lengths of Diatomic Molecules
    5. 3.5 Interaction of Radiation with Molecule
    6. 3.6 Spectrum
    7. 3.7 Thermal Distribution of Rotational Quantum States (Intensities of the Rotational Lines)
    8. 3.8 Limitations of Simple Model
      1. 3.8.1 Effect of Isotopes on the Rotational Spectrum
      2. 3.8.2 Non-Rigid Rotator
      3. 3.8.3 Effect of Nuclear Spin (Hyperfine Structure)
    9. 3.9 Polyatomic Molecules
      1. 3.9.1 Polyatomic Linear Molecules
      2. 3.9.2 Energy Levels and Spectra
      3. 3.9.3 Rotational Spectra of Spherical Top Molecules
      4. 3.9.4 Rotational Spectra of Symmetric Top Molecules
      5. 3.9.5 Transition Between Two Adjacent Energy States (Prolate/Oblate Tops as Rigid Rotators)
      6. 3.9.6 Rotational Spectra of Asymmetric Top Molecules
    10. 3.10 Microwave Spectrometer
    11. 3.11 Stark Effect in Relation to Dipole Moment Determination from Rotational Spectrum
    12. 3.12 Applications of Microwave Spectroscopy
      1. 3.12.1 Microwave Oven
    13. Problems
  10. 4. Vibrational Spectra and the Flexibility of Molecules
    1. 4.1 Introduction
    2. 4.2 Vibration of a Ball and Spring System
    3. 4.3 Vibrational Energy Levels of Diatomic Molecule
      1. 4.3.1 The Simple Harmonic Oscillator
      2. 4.3.2 Wave Functions of Harmonic Oscillator
      3. 4.3.3 Mechanism of Absorption of Infrared Radiation by Molecules
      4. 4.3.4 Spectrum
      5. 4.3.5 Intensity or Thermal Population Distribution
    4. 4.4 The Anharmonic Oscillator
      1. 4.4.1 Energy Levels
      2. 4.4.2 Spectrum
    5. 4.5 Hot Vibrational Bands
    6. 4.6 Rotational-Vibrational Spectrum
      1. 4.6.1 Energy Levels
      2. 4.6.2 Selection Rules
      3. 4.6.3 Rotational-Vibrational Spectrum
      4. 4.6.4 Calculation of the Rotational Constants
    7. 4.7 Dissociation Energy of Diatomic Molecules
      1. 4.7.1 Maximum Value of Vibrational Quantum Number and Energy
      2. 4.7.2 Bond Energy of Diatomic Molecule
      3. 4.7.3 Determination of Dissociation Energy of Diatomic Molecules
    8. 4.8 Nature and Number of Vibrational Motions in Polyatomic Molecules
      1. 4.8.1 Number of Vibrations and their Symmetry
      2. 4.8.2 Overtones and Combination Bands
      3. 4.8.3 Fermi Resonance
      4. 4.8.4 Vibrational Coupling
      5. 4.8.5 Rotation-Vibration Spectra of Polyatomic Molecules
    9. 4.9 Basic Principles of a Double Beam Dispersive Infrared Spectrometer
      1. 4.9.1 Basic Principles of Fourier Transform Infrared Spectrometer (FTIRS)
    10. 4.10 Qualitative Applications of Infrared Spectroscopy
      1. 4.10.1 Structural Elucidation
      2. 4.10.2 Identification of Molecular Species
      3. 4.10.3 Study of Environmental Effects of Molecular Systems
      4. 4.10.4 Study of Briged Inorganic Complexes
    11. Problems
    12. Appendix 4A-1
  11. 5. Raman Spectroscopy
    1. 5.1 Introduction
    2. 5.2 Classical Theory of Raman Scattering
      1. 5.2.1 Geometrical Description of Three Dimensional Polarizability
      2. 5.2.2 Vibrational and Rotational Raman Spectrum
    3. 5.3 Quantum Theory of Raman Scattering
    4. 5.4 General Selection Rule for Raman Scattering
      1. 5.4.1 Based on Polarizability
      2. 5.4.2 Mutual Exclusion Principle
    5. 5.5 Raman Spectra of Diatomic Molecules
      1. 5.5.1 Pure Rotational Raman Spectra of Diatomic Molecules
      2. 5.5.2 Vibrational Raman Spectra of Diatomic Molecules
      3. 5.5.3 Rotational-Vibrational Raman Spectra of Diatomic Molecules
    6. 5.6 Vibrational Raman Spectra of Polyatomic Molecules
    7. 5.7 Basic Principles of a Raman Spectrometer
    8. 5.8 Resonance Raman Scattering/Effect (RRS/RRE)
    9. 5.9 Applications of Raman Spectroscopy
      1. 5.9.1 Study of Environmental Effects on Molecular Systems
      2. 5.9.2 Mechanism of Tautomerism and Polymerisation
      3. 5.9.3 Nature of Chemical Bond
      4. 5.9.4 Molecular Structure
    10. Problems
  12. 6. Electronic Spectrum
    1. 6.1 Introduction
    2. 6.2 Diatomic Molecules
      1. 6.2.1 Bonding in Diatomic Molecules
      2. 6.2.2 The Shapes of the Molecular Orbitals in Diatomic Molecules
      3. 6.2.3 Energies of m.o.’s
      4. 6.2.4 Electronic Configuration of A2 Molecules
    3. 6.3 Classification of Electronic States
      1. 6.3.1 Orbital Angular Momentum
      2. 6.3.2 Spin Angular Momentum
      3. 6.3.3 Total Angular Momentum
      4. 6.3.4 Symmetry Properties of the Electronic Wave Functions or Orbitals
      5. 6.3.5 Term Symbols
    4. 6.4 Stable and Unstable States
    5. 6.5 Electronic Spectrum of Diatomic Molecules
      1. 6.5.1 Born–Oppenheimer Approximation
      2. 6.5.2 Coarse or Vibrational Structure of Electronic Transitions
      3. 6.5.3 Rotational Structure (or Finer Details) of Electronic Bands
    6. 6.6 The Isotope Effect in Molecular Electronic Spectra
      1. 6.6.1 Vibrational Isotope Effect
      2. 6.6.2 Rotational Isotope Effect
    7. 6.7 Continuous Absorption and Emission Spectra
      1. 6.7.1 Absorption
    8. 6.8 Pre-dissociation/Diffuse Spectra
      1. 6.8.1 Mechanism of Pre-dissociation in Diatomic Molecules
      2. 6.8.2 Pre-dissociation in Polyatomic Molecules
      3. 6.8.3 Pre-dissociation in Emission Spectra
    9. 6.9 Dissociation Energy and Its Determination
      1. 6.9.1 Band Convergence Method
      2. 6.9.2 Pre-dissociation Limit Method
    10. 6.10 Electronic Spectrum of Polyatomic Molecules
      1. 6.10.1 The Concept of Chromophore
      2. 6.10.2 Nature of Molecular Orbitals
      3. 6.10.3 Electronic Spectra of Different Chromophores
      4. 6.10.4 Multiple Bond
      5. 6.10.5 The Multiple-Bonded Basic Group
      6. 6.10.6 Aromatic Systems
    11. 6.11 Structure and Spectra of Transition Metal Complexes
      1. 6.11.1 Ligand Field Theory (LFT)
      2. 6.11.2 Different Kinds of Absorption Transitions
      3. 6.11.3 Experimental Examples and Comparing Them with States Arising from Electronic Configuration Using LFT
      4. 6.11.4 Energy Level Diagrams
    12. 6.12 Deactivation of Excited States
      1. 6.12.1 Non-Radiative Processes
      2. 6.12.2 Radiative Processes
    13. 6.13 Basic Principles of a Double Beam UV-Visible Spectrophotometer
    14. 6.14 Applications of Low Resolution UV–Visible Spectroscopy
      1. 6.14.1 Qualitative Analysis
    15. Problems
    16. Appendix 6A
  13. 7. Nuclear Magnetic Resonance Spectroscopy
    1. 7.1 Nuclear Properties Relevant to Nuclear Magnetic Resonance (NMR)
    2. 7.2 Concept of Nuclear Magnetic States
    3. 7.3 Units of Some Magnetic Properties Involved in NMR
    4. 7.4 Energy of the Magnetic States
    5. 7.5 Larmor Theorem
    6. 7.6 General Selection Rules for the Transition Between Magnetic States
    7. 7.7 The Magnetic Resonance Condition
    8. 7.8 Equivalence of Classical Larmor Precessional Frequency and Quantum Mechanical Transition Frequency
    9. 7.9 Nuclear Population in Different States
    10. 7.10 Line Shape and Line Width
    11. 7.11 Intensity of NMR Signal
    12. 7.12 Spin Relaxation Process
      1. 7.12.1 Types of Relaxation Processes
      2. 7.12.2 Width of NMR Signal and Relaxation Times
    13. 7.13 Fourier Transform NMR (FTNMR) Spectroscopy
    14. 7.14 The Screening Constant (σ)
      1. 7.14.1 Chemical Shift Scale
      2. 7.14.2 Standard Reference and Chemical Shift of Some Other Nuclei
    15. 7.15 Effects of Chemical Environments on Chemical Shift
    16. 7.16 Dipole-Dipole (d-d )- and Spin-Spin (s-s) Coupling
    17. 7.17 Concept of Chemical-Shift Equivalent and Magnetically Equivalent Protons
      1. 7.17.1 Chemical-Shift Equivalent Protons
      2. 7.17.2 Magnetically Equivalent Protons
    18. 7.18 Quantification (Mechanism) of s–s Interaction
    19. 7.19 NMR Spectrometers
      1. 7.19.1 Basic Principles of NMR Spectrometer
    20. 7.20 Simplification of NMR Spectrum
      1. 7.20.1 NMR Spectrometers with Higher Magnetic Field Strength
      2. 7.20.2 Use of Chemical Shift Reagents
      3. 7.20.3 Deuteration
      4. 7.20.4 Double Resonance Experiment
      5. 7.20.5 Spin Decoupling
      6. 7.20.6 Basic Principle of a Fourier Transform NMR (FTNMR) Spectrometer
    21. 7.21 13C-NMR Spectroscopy
    22. 7.22 Applications
      1. 7.22.1 The Structural Elucidation
      2. 7.22.2 Analytical Application
    23. Problems
  14. 8. Electron Spin Resonance Spectroscopy
    1. 8.1 Introduction
    2. 8.2 Similarities Between ESR and NMR
    3. 8.3 Energy of Free-Electron Spin State
    4. 8.4 Energy Levels of a Free Electron in an External Magnetic Field
    5. 8.5 Intensity of ESR Lines and Factors Affecting It
    6. 8.6 Relaxation Processes
      1. 8.6.1 Spin–Lattice Relaxation
      2. 8.6.2 s–s Interactions
    7. 8.7 ESR Line Width and Factors Affecting It
    8. 8.8 g-Value and Factors Affecting ESR Lines
    9. 8.9 Zero-Field Splitting (Fine Structure Terms) and Kramer’s Degeneracy
    10. 8.10 Hyperfine Interaction
    11. 8.11 Types of Hyperfine Interactions
      1. 8.11.1 Isotropic Hyperfine Interaction
    12. 8.12 Rules for the Prediction of Number of Hyperfine Lines and their Relative Intensities: Analysis of Isotropic EPR Spectra
      1. 8.12.1 Analysis for Equivalent Nuclei
    13. 8.13 Basic Principle of an ESR Spectrometer
    14. 8.14 Fourier Transform ESR Spectroscopy (FTESRS)
    15. 8.15 Applications of ESR Spectroscopy
      1. 8.15.1 Determination of Concentration of Free Radicals
      2. 8.15.2 Determination of Unpaired Electron Spin Density and the Molecular Shape of Free Radical
    16. Problems
  15. 9. Mössbauer Spectroscopy
    1. 9.1 Introduction
    2. 9.2 Isomer Nuclear Transitions
    3. 9.3 Resonance Fluorescence
      1. 9.3.1 Atomic Resonance Fluorescence
      2. 9.3.2 Nuclear Gamma Ray Resonance Fluorescence
    4. 9.4 Mössbauer Effect
      1. 9.4.1 Line Position
      2. 9.4.2 Intensity of Mössbauer Line and Parameters Affecting It
      3. 9.4.3 Width of Mössbauer Line and Factors Affecting It
    5. 9.5 Hyperfine Interactions
      1. 9.5.1 Centre Shift
      2. 9.5.2 Nuclear Isomer Shift and Factors Affecting It
    6. 9.6 Magnetic Hyperfine Structure
      1. 9.6.1 Internal or Effective Magnetic Field
      2. 9.6.2 Effect of External Magnetic Field (or Magnetic Hyperfine Interactions)
    7. 9.7 Electric Quadrupole Interaction
      1. 9.7.1 Intensity of Nuclear Quadrupole Doublet
      2. 9.7.2 Magnitude and Sign of Quadrupole Interaction
      3. 9.7.3 Effect of Combination of Magnetic and Quadrupole Interactions
    8. 9.8 Mössbauer Spectrometer
      1. 9.8.1 Mössbauer Spectrum
      2. 9.8.2 Data Computation
    9. 9.9 Applications of Mössbauer Spectroscopy
      1. 9.9.1 Structure of Coordination Compounds
      2. 9.9.2 Catalysis: Tin Dioxide Assisted Antimony Oxidation
      3. 9.9.3 Off-Centre Tin Atoms in PbSnTeSe
      4. 9.9.4 Uranium/Iron Multilayers
      5. 9.9.5 Superspin Glass Transition in Al49Fe30Cu21
      6. 9.9.6 Spin-State Equilibria
    10. Problems
  16. 10. Lasers
    1. 10.1 Introduction
    2. 10.2 Stimulated Absorption
      1. 10.2.1 Spontaneous Emission
    3. 10.3 Stimulated Emission
    4. 10.4 Relations Between the Einstein’s Coefficients
    5. 10.5 Idea of Lasing Action
    6. 10.6 Methods to Create Population Inversion
    7. 10.7 Principle of Pumping Schemes
    8. 10.8 Requirements and Rate Equations for Lasers
      1. 10.8.1 A Two-Level System
      2. 10.8.2 A Three-Level System
      3. 10.8.3 A Four-Level Laser System
    9. 10.9 Experimental Aspect of Lasers
      1. 10.9.1 Optically Resonance Cavity
      2. 10.9.2 Characteristics of Optical Resonate Cavity
      3. 10.9.3 Radiant Losses
      4. 10.9.4 Diffraction Losses
      5. 10.9.5 Stable and Unstable Resonators
    10. 10.10 Characteristics of Laser Beams
      1. 10.10.1 Monochromaticity
      2. 10.10.2 Coherence
      3. 10.10.3 Directionality
      4. 10.10.4 Brightness
      5. 10.10.5 Stimulated Radiation and Emitted Radiation
    11. 10.11 Methods of Q-Switching
      1. 10.11.1 Mechanism of Bleaching
    12. 10.12 Wavelength Range and Power Output of Lasers
    13. 10.13 Few Specific Laser Systems
      1. 10.13.1 Solid-State Lasers
      2. 10.13.2 Ion and Atomic Lasers
      3. 10.13.3 Molecular Lasers
      4. 10.13.4 Liquid Lasers
      5. 10.13.5 Electroionisation Lasers (High Pressure Gas Lasers)
      6. 10.13.6 Gas-Dynamic Lasers
      7. 10.13.7 Chemical Lasers
      8. 10.13.8 Chain Reactions for Chemical Lasers
      9. 10.13.9 Plasma Lasers: Recombination Plasma as the Active Medium
      10. 10.13.10 Semi-conductor Lasers
      11. 10.13.11 Injection Lasers
      12. 10.13.12 Photodissociation Lasers
    14. 10.14 Applications of Lasers
      1. 10.14.1 Laser Spectroscopy
      2. 10.14.2 Isotope Separation
      3. 10.14.3 Environmental Studies
      4. 10.14.4 Holography
      5. 10.14.5 Engineering Applications
      6. 10.14.6 Lasers in Chemical Kinetics
      7. 10.14.7 Lasers in Medicines
    15. Problems
    16. Appendix 10-A
  17. 11. Mass Spectrometry
    1. 11.1 Introduction
    2. 11.2 Comparison of Mass Spectrometry with Other Spectroscopic Techniques
    3. 11.3 Basic Principles of Mass Spectrometry
      1. 11.3.1 Electron Impact Mass Spectrometry
    4. 11.4 Presentation of Mass Spectrum
    5. 11.5 Parameters of Good Mass Spectrometer
      1. 11.5.1 Resolving Power or Resolution of a Mass Spectrometer
      2. 11.5.2 Mass Spectrometer Sensitivity
    6. 11.6 Various Forms of Mass Spectrometry on the Basis of Ionisation Processes Other Than EIMS
      1. 11.6.1 Chemical Ionisation Mass Spectrometry (CIMS)
      2. 11.6.2 Fast Atom Bombardment Mass Spectrometry (FABMS)
    7. 11.7 Various Types of Ions Enclosed in Mass Spectrometry
      1. 11.7.1 Parent or Original Molecular Ion
      2. 11.7.2 Fragment Ions
      3. 11.7.3 Multi-charged Ions
      4. 11.7.4 Metastable Ions
      5. 11.7.5 Negative Ions
    8. 11.8 Intensities of the Signals in the Mass Spectrum
    9. 11.9 Intensity of the Parent Peak and Factors Affecting it
    10. 11.10 Terms and Symbols Used for the Mode of Fragmentation of Molecular Ions
    11. 11.11 General Rules for Writing Molecular Formula
      1. 11.11.1 Hydrogen Rule
      2. 11.11.2 Nitrogen Rule
      3. 11.11.3 Ring Rule
      4. 11.11.4 Even-Electron Rule
    12. 11.12 Mode of Fragmentation of Positively Charged Molecular Ion
      1. 11.12.1 Ordinary Fissions
      2. 11.12.2 Hydrocarbons
      3. 11.12.3 Alkenes
      4. 11.12.4 Saturated Ring Systems
      5. 11.12.5 Compound with Cyclic Double Bond
      6. 11.12.6 Aromatic and Aralkyl Hydrocarbons
      7. 11.12.7 Rupture of a Bond Close to Negative Atom (Electronegative Atom)
    13. 11.13 Elimination of Neutral Molecules
    14. 11.14 Rearrangement Fissions
      1. 11.14.1 Hydrogen-Migration via Six Member Transition (McLafferty Rearrangement)
    15. 11.15 Interpretation of Mass Spectra of Unkown Compounds
    16. 11.16 Applications of Mass Spectrometry
      1. 11.16.1 Determination of Atomic Masses of Elements
      2. 11.16.2 Identification of Molecular Species from Fragmentation Pattern
      3. 11.16.3 Determination of Molecular Formula
      4. 11.16.4 Beynon Method for Computation of Abundance Parameters
    17. Problems
  18. Bibliography
  19. Copyright

Product information

  • Title: Molecular Spectrocopy,1e
  • Author(s): S.K. Dogra
  • Release date: July 2014
  • Publisher(s): Pearson Education India
  • ISBN: 9789332540811