Skip to Content
Neural Networks with R
book

Neural Networks with R

by Balaji Venkateswaran, Giuseppe Ciaburro
September 2017
Beginner to intermediate
270 pages
5h 53m
English
Packt Publishing
Content preview from Neural Networks with R

Perceptrons and their applications

A perceptron can be understood as anything that takes multiple inputs and produces one output. It is the simplest form of a neural network. The perceptron was proposed by Frank Rosenblatt in 1958 as an entity with an input and output layer and a learning rule based on minimizing the error. This learning function called error backpropagation alters connective weights (synapses) based on the actual output of the network with respect to a given input, as the difference between the actual output and the desired output.

The enthusiasm was enormous and the cybernetics industry was born. But later, scientists Marvin Minsky and Seymour Papert (1969) demonstrated the limits of the perceptron. Indeed, a perceptron ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with R

Deep Learning with R

J.J. Allaire
Advanced Machine Learning with R

Advanced Machine Learning with R

Cory Lesmeister, Dr. Sunil Kumar Chinnamgari

Publisher Resources

ISBN: 9781788397872Supplemental Content