Preface

Imaging techniques in science, engineering and medicine have evolved to expand our ability to visualize the internal information in an object such as the human body. Examples may include X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound imaging and positron emission tomography (PET). They provide cross-sectional images of the human body, which are solutions of corresponding inverse problems. Information embedded in such an image depends on the underlying physical principle, which is described in its forward problem. Since each imaging modality has limited viewing capability, there have been numerous research efforts to develop new techniques producing additional contrast information not available from existing methods.

There are such imaging techniques of practical significance, which can be formulated as nonlinear inverse problems. Electrical impedance tomography (EIT), magnetic induction tomography (MIT), diffuse optical tomography (DOT), magnetic resonance electrical impedance tomography (MREIT), magnetic resonance electrical property tomography (MREPT), magnetic resonance elastography (MRE), electrical source imaging and others have been developed and adopted in application areas where new contrast information is in demand. Unlike X-ray CT, MRI and PET, they manifest some nonlinearity, which result in their image reconstruction processes being represented by nonlinear inverse problems.

Visualizing new contrast information on the electrical, ...

Get Nonlinear Inverse Problems in Imaging now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.