Skip to Content
Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
book

Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

by Robert Johansson
December 2018
Intermediate to advanced
709 pages
18h 56m
English
Apress
Content preview from Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
© Robert Johansson 2019
Robert JohanssonNumerical Python https://doi.org/10.1007/978-1-4842-4246-9_6

6. Optimization

Robert Johansson1 
(1)
Urayasu-shi, Chiba, Japan
 

In this chapter, we will build on Chapter 5 about equation solving and explore the related topic of solving optimization problems. In general, optimization is the process of finding and selecting the optimal element from a set of feasible candidates. In mathematical optimization, this problem is usually formulated as determining the extreme value of a function on a given domain. An extreme value, or an optimal value, can refer to either the minimum or maximum of the function, depending on the application and the specific problem. In this chapter we are concerned with the optimization ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu
Numerical Computing with Python

Numerical Computing with Python

Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim

Publisher Resources

ISBN: 9781484242469Purchase LinkPublisher Website