Broadcasting and shape manipulation
NumPy operations are mostly done element-wise, which requires two arrays in an operation to have the same shape; however, this doesn't mean that NumPy operations can't take two differently shaped arrays (refer to the first example we looked at with scalars). NumPy provides the flexibility to broadcast a smaller-sized array across a larger one. But we can't broadcast the array to just about any shape. It needs to follow certain constrains; we will be covering them in this section. One key idea to keep in mind is that broadcasting involves performing meaningful operations over two differently shaped arrays. However, inappropriate broadcasting might lead to an inefficient use of memory that slows down computation. ...
Get NumPy Essentials now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.