Op Amps for Everyone, 3rd Edition

Book description

The op amp IC has become the universal analog IC because it can perform all analog tasks. OP AMPS FOR EVERYONE provides the theoretical tools and practical know-how to get the most from these versatile devices. This new edition substantially updates coverage for low-speed and high-speed applications, and provides step by step walkthroughs for design and selection of op amps and circuits.

* Modular organization allows readers, based on their own background and level of experience, to start at any chapter* written by experts at Texas Instruments and based on real op amps and circuit designs from TI* NEW: large number of new cases for single supply op amp design techniques, including use of web-based design tool* NEW: complete design walk-through for low-speed precision op amp selection and circuit design* NEW: updates, including new techniques, for design for high-speed, low distortion applications.* NEW: extensive new material on filters and filter design, including high-speed filtering for video and data

Table of contents

  1. Cover Image
  2. Table of Contents
  3. Copyright
  4. Important Notice
  5. Dedication
  6. Foreword
  7. Preface to the Third Edition
  8. Chapter 1. The Op Amp's Place in the World
  9. 1.1. The Problem
  10. 1.2. The Solution
  11. 1.3. The Birth of the Op Amp
  12. 1.4. The Vacuum Tube Era
  13. 1.5. The Transistor Era
  14. 1.6. The IC Era
  15. Chapter 2. Review of Circuit Theory
  16. 2.1. Introduction
  17. 2.2. Laws of Physics
  18. 2.3. Voltage Divider Rule
  19. 2.4. Current Divider Rule
  20. 2.5. Thevenin's Theorem
  21. 2.6. Superposition
  22. 2.7. Calculation of a Saturated Transistor Circuit
  23. 2.8. Transistor Amplifier
  24. Chapter 3. Development of the Ideal Op Amp Equations
  25. 3.1. Ideal Op Amp Assumptions
  26. 3.2. The Noninverting Op Amp
  27. 3.3. The Inverting Op Amp
  28. 3.4. The Adder
  29. 3.5. The Differential Amplifier
  30. 3.6. Complex Feedback Networks
  31. 3.7. Video Amplifiers
  32. 3.8. Capacitors
  33. 3.9. Why an Ideal Op Amp Would Destroy the Known Universe
  34. 3.10. Summary
  35. Chapter 4. Single Supply Op Amp Design Techniques
  36. 4.1. Single Supply versus Dual Supply
  37. 4.2. Circuit Analysis
  38. 4.3. Simultaneous Equations
  39. 4.4. Summary
  40. Chapter 5. Beyond Case 4
  41. 5.1. A Continuum of Applications
  42. 5.2. Noninverting Attenuator with Zero Offset
  43. 5.3. Noninverting Attenuation with Positive Offset
  44. 5.4. Noninverting Attenuation with Negative Offset
  45. 5.5. Inverting Attenuation with Zero Offset
  46. 5.6. Inverting Attenuation with Positive Offset
  47. 5.7. Inverting Attenuation with Negative Offset
  48. 5.8. Conclusion
  49. Chapter 6. Feedback and Stability Theory
  50. 6.1. Why Study Feedback Theory?
  51. 6.2. Block Diagram Math and Manipulations
  52. 6.3. Feedback Equation and Stability
  53. 6.4. Bode Analysis of Feedback Circuits
  54. 6.5. Loop Gain Plots Are the Key to Understanding Stability
  55. 6.6. The Second Order Equation and Ringing/Overshoot Predictions
  56. Chapter 7. Development of the Nonideal Op Amp Equations
  57. 7.1. Introduction
  58. 7.2. Review of the Canonical Equations
  59. 7.3. Noninverting Op Amps
  60. 7.4. Inverting Op Amps
  61. 7.5. Differential Op Amps
  62. Chapter 8. Voltage Feedback Op Amp Compensation
  63. 8.1. Introduction
  64. 8.2. Internal Compensation
  65. 8.3. External Compensation, Stability, and Performance
  66. 8.4. Dominant Pole Compensation
  67. 8.5. Gain Compensation
  68. 8.6. Lead Compensation
  69. 8.7. Compensated Attenuator Applied to Op Amp
  70. 8.8. Lead/Lag Compensation
  71. 8.9. Comparison of Compensation Schemes
  72. 8.10. Conclusions
  73. Chapter 9. Current Feedback Op Amp Analysis
  74. 9.1. Introduction
  75. 9.2. CFA Model
  76. 9.3. Development of the Stability Equation
  77. 9.4. The Noninverting CFA
  78. 9.5. The Inverting CFA
  79. 9.6. Stability Analysis
  80. 9.7. Selection of the Feedback Resistor
  81. 9.8. Stability and Input Capacitance
  82. 9.9. Stability and Feedback Capacitance
  83. 9.10. Compensation of CF and CG
  84. 9.11. Summary
  85. Chapter 10. Voltage and Current Feedback Op Amp Comparison
  86. 10.1. Introduction
  87. 10.2. Precision
  88. 10.3. Bandwidth
  89. 10.4. Stability
  90. 10.5. Impedance
  91. 10.6. Equation Comparison
  92. Chapter 11. Fully Differential Op Amps
  93. 11.1. Introduction
  94. 11.2. What Does Fully Differential Mean?
  95. 11.3. How Is the Second Output Used?
  96. 11.4. Differential Gain Stages
  97. 11.5. Single Ended to Differential Conversion
  98. 11.6. Working with Terminated Inputs
  99. 11.7. A New Function
  100. 11.8. Conceptualizing the VOCM Input
  101. 11.9. Instrumentation
  102. 11.10. Filter Circuits
  103. Chapter 12. Op Amp Noise Theory and Applications
  104. 12.1. Introduction
  105. 12.2. Characterization
  106. 12.3. Types of Noise
  107. 12.4. Noise Colors
  108. 12.5. Op Amp Noise
  109. 12.6. Putting It All Together
  110. Chapter 13. Understanding Op Amp Parameters
  111. 13.1. Introduction
  112. 13.2. Temperature Coefficient of the Input Offset Current, αIIO
  113. 13.3. Temperature Coefficient of Input Offset Voltage, αVIO or αVIO
  114. 13.4. Differential Gain Error, AD
  115. 13.5. Gain Margin Parameter, Am
  116. 13.6. Open Loop Voltage Gain Parameter, AOL
  117. 13.7. Large Signal Voltage Amplification Gain Condition, AV
  118. 13.8. Differential Large Signal Voltage Amplification Parameter, AVD
  119. 13.9. Unity Gain Bandwidth Parameter, B1
  120. 13.10. Maximum Output Swing Bandwidth Parameter, BOM
  121. 13.11. Bandwidth Parameter, BW
  122. 13.12. Input Capacitance Parameter, CI
  123. 13.13. Common Mode Input Capacitance Parameter, Cic or Ci(c)
  124. 13.14. Differential Input Capacitance Parameter, Cid
  125. 13.15. Load Capacitance Condition, CL
  126. 13.16. Supply Voltage Sensitivity, ΔVDD±(or CC±)/ΔVIO or kSVS
  127. 13.17. Common Mode Rejection Ratio Parameter, CMRR or kCMR
  128. 13.18. Frequency Condition, f
  129. 13.19. Op Amp Gain Bandwidth Product Parameter, GBW
  130. 13.20. Supply Current (Shutdown) Parameter, ICC(SHDN) or IDD(SHDN)
  131. 13.21. Supply Current Parameter, ICC or IDD
  132. 13.22. Input Current Range Parameter, II
  133. 13.23. Input Bias Current Parameter, IIB
  134. 13.24. Input Offset Current Parameter, IIO
  135. 13.25. Input Noise Current Parameter, In
  136. 13.26. Output Current Parameter, IO
  137. 13.27. Low Level Output Current Condition, IOL
  138. 13.28. Short Circuit Output Current Parameter, IOS or ISC
  139. 13.29. Supply Rejection Ratio Parameter, kSVR
  140. 13.30. Power Dissipation Parameter, PD
  141. 13.31. Power Supply Rejection Ratio Parameter, PSRR
  142. 13.32. Junction to Ambient Thermal Resistance Parameter, θJA
  143. 13.33. Junction to Case Thermal Resistance Parameter, θJC
  144. 13.34. Input Resistance Parameter, ri
  145. 13.35. Differential Input Resistance Parameter (rid or ri(d))
  146. 13.36. Load Resistance Condition, RL
  147. 13.37. Null Resistance Condition, Rnull
  148. 13.38. Output Resistance Parameters, ro
  149. 13.39. Signal Source Condition, RS
  150. 13.40. Open Loop Transresistance Parameters, Rt
  151. 13.41. Op Amp Slew Rate Parameter, SR
  152. 13.42. Operating Free Air Temperature Condition, TA
  153. 13.43. Turn off Time (Shutdown) Parameter, tDIS or t(off)
  154. 13.44. Turn on Time (Shutdown) Parameter, tEN
  155. 13.45. Fall Time Parameter, tf
  156. 13.46. Total Harmonic Distortion Parameter, THD
  157. 13.47. Total Harmonic Distortion Plus Noise Parameter, THD + N
  158. 13.48. Maximum Junction Temperature Parameter, TJ
  159. 13.49. Rise Time Parameter, tr
  160. 13.50. Settling Time Parameter, ts
  161. 13.51. Storage Temperature Parameter, TS or Tstg
  162. 13.52. Supply Voltage Condition, VCC or VDD
  163. 13.53. Input Voltage Range Condition or Parameter, VI
  164. 13.54. Common Mode Input Voltage Condition, VIC
  165. 13.55. Common Mode Input Voltage Range Parameter, VICR
  166. 13.56. Differential Input Voltage Parameter, VID
  167. 13.57. Differential Input Voltage Range Parameter, VDIR
  168. 13.58. Turn on Voltage (Shutdown) Parameter, VIH-SHDN or V(ON)
  169. 13.59. Turn off Voltage (Shutdown) Parameter, VIL-SHDN or V(OFF)
  170. 13.60. Input Voltage Condition, VIN
  171. 13.61. Input Offset Voltage Parameter, VIO or VOS
  172. 13.62. Equivalent Input Noise Voltage Parameter, Vn
  173. 13.63. Broadband Noise Parameter (VN(PP))
  174. 13.64. High Level Output Voltage Condition or Parameter, VOH
  175. 13.65. Low Level Output Voltage Condition or Parameter, VOL
  176. 13.66. Maximum Peak to Peak Output Voltage Swing Parameter, VOM±
  177. 13.67. Peak to Peak Output Voltage Swing Condition or Parameter, VO(PP)
  178. 13.68. Step Voltage Peak to Peak Condition, V(STEP)PP
  179. 13.69. Crosstalk Parameter, XT
  180. 13.70. Output Impedance Parameter, Zo
  181. 13.71. Open Loop Transimpedance Parameter, Zt
  182. 13.72. Differential Phase Error Parameter, ΦD
  183. 13.73. Phase Margin Parameter, Φm
  184. 13.74. Bandwidth for 0.1 dB Flatness
  185. 13.75. Case Temperature for 60 Seconds
  186. 13.76. Continuous Total Dissipation Parameter
  187. 13.77. Duration of Short Circuit Current
  188. 13.78. Input Offset Voltage Long Term Drift Parameter
  189. 13.79. Lead Temperature for 10 or 60 Seconds
  190. Chapter 14. Instrumentation
  191. 14.1. Introduction
  192. 14.2. Transducer Types
  193. 14.3. Design Procedure
  194. 14.4. Review of the System Specifications
  195. 14.5. Reference Voltage Characterization
  196. 14.6. Transducer Characterization
  197. 14.7. ADC Characterization
  198. 14.8. Op Amp Selection
  199. 14.9. Amplifier Circuit Design
  200. 14.10. Test
  201. 14.11. Summary
  202. Chapter 15. Interfacing an Op Amp to an Analog to Digital Converter
  203. 15.1. Introduction
  204. 15.2. System Information
  205. 15.3. Power Supply Information
  206. 15.4. Input Signal Characteristics
  207. 15.5. Analog to Digital Converter Characteristics
  208. 15.6. Operational Amplifier Characteristics
  209. 15.7. Architectural Decisions
  210. Chapter 16. Wireless Communication
  211. 16.1. Introduction
  212. 16.2. Wireless Systems
  213. 16.3. Selection of ADCs/DACs
  214. 16.4. Factors Influencing the Choice of Op Amps
  215. 16.5. Antialiasing Filters
  216. 16.6. Communication D/A Converter Reconstruction Filter
  217. 16.7. External VREF Circuits for ADCs/DACs
  218. 16.8. High Speed Analog Input Drive Circuits
  219. Chapter 17. Using Op Amps for RF Design
  220. 17.1. Introduction
  221. 17.2. Advantages
  222. 17.3. Disadvantages
  223. 17.4. Voltage Feedback or Current Feedback?
  224. 17.5. A Review of Traditional RF Amplifiers
  225. 17.6. Amplifier Gain Revisited
  226. 17.7. Scattering Parameters
  227. 17.8. Phase Linearity
  228. 17.9. Frequency Response Peaking
  229. 17.10. −1 dB Compression Point
  230. 17.11. Two Tone, Third Order Intermodulation Intercept
  231. 17.12. Noise Figure
  232. 17.13. Conclusions
  233. Chapter 18. Interfacing DACs to Loads
  234. 18.1. Introduction
  235. 18.2. Load Characteristics
  236. 18.3. Understanding the DAC and Its Specifications
  237. 18.4. DAC Error Budget
  238. 18.5. DAC Errors and Parameters
  239. 18.6. Compensating for DAC Capacitance
  240. 18.7. Increasing Op Amp Buffer Amplifier Current and Voltage
  241. Chapter 19. Sine Wave Oscillators
  242. 19.1. What Is a Sine Wave Oscillator?
  243. 19.2. Requirements for Oscillation
  244. 19.3. Phase Shift in the Oscillator
  245. 19.4. Gain in the Oscillator
  246. 19.5. Active Element (Op Amp) Impact on the Oscillator
  247. 19.6. Analysis of the Oscillator Operation (Circuit)
  248. 19.7. Sine Wave Oscillator Circuits
  249. 19.8. Conclusion
  250. Chapter 20. Active Filter Design Techniques
  251. 20.1. Introduction
  252. 20.2. Fundamentals of Low Pass Filters
  253. 20.3. Low Pass Filter Design
  254. 20.4. High Pass Filter Design
  255. 20.5. Bandpass Filter Design
  256. 20.6. Band Rejection Filter Design
  257. 20.7. All Pass Filter Design
  258. 20.8. Practical Design Hints
  259. 20.9. Filter Coefficient Tables
  260. Chapter 21. Fast, Practical Filter Design for Beginners
  261. 21.1. Introduction
  262. 21.2. Picking the Response
  263. 21.3. Low Pass Filter
  264. 21.4. High Pass Filter
  265. 21.5. Narrow (Single Frequency) Bandpass Filter
  266. 21.6. Wide Bandpass Filter
  267. 21.7. Notch (Single Frequency Rejection) Filter
  268. 21.8. Band Reject Filter
  269. 21.9. Summary of Filter Characteristics
  270. Chapter 22. High Speed Filter Design
  271. 22.1. Introduction
  272. 22.2. High Speed, Low Pass Filters
  273. 22.3. High Speed, High Pass Filters
  274. 22.4. High Speed Bandpass Filters
  275. 22.5. High Speed Notch Filter
  276. 22.6. Conclusions
  277. Chapter 23. Circuit Board Layout Techniques
  278. 23.1. General Considerations
  279. 23.2. PCB Mechanical Construction
  280. 23.3. Grounding
  281. 23.4. The Frequency Characteristics of Passive Components
  282. 23.5. Decoupling
  283. 23.6. Input and Output Isolation
  284. 23.7. Packages
  285. 23.8. Summary
  286. Chapter 24. Designing Low Voltage Op Amp Circuits
  287. 24.1. Introduction
  288. 24.2. Dynamic Range
  289. 24.3. Signal to Noise Ratio
  290. 24.4. Input Common Mode Range
  291. 24.5. Output Voltage Swing
  292. 24.6. Shutdown and Low Current Drain
  293. 24.7. Single Supply Circuit Design
  294. 24.8. Transducer to ADC Analog Interface
  295. 24.9. DAC to Actuator Analog Interface
  296. 24.10. Comparison of Op Amps
  297. 24.11. Summary
  298. Chapter 25. Common Application Mistakes
  299. 25.1. Introduction
  300. 25.2. Op Amp Operated at Less than Unity (or Specified) Gain
  301. 25.3. Op Amp Used as a Comparator
  302. 25.4. Improper Termination of Unused Sections
  303. 25.5. DC Gain
  304. 25.6. Current Source
  305. 25.7. Current Feedback Amplifier: Shorted Feedback Resistor
  306. 25.8. Current Feedback Amplifier: Capacitor in the Feedback Loop
  307. 25.9. Fully Differential Amplifier: Incorrect Single Ended Termination
  308. 25.10. Fully Differential Amplifier: Incorrect DC Operating Point
  309. 25.11. Fully Differential Amplifier: Incorrect Common Mode Range
  310. 25.12. The Number 1 Design Mistake
  311. Appendix A. Single Supply Circuit Collection
  312. Appendix B. Terminating Differential Amplifiers
  313. Index

Product information

  • Title: Op Amps for Everyone, 3rd Edition
  • Author(s): Bruce Carter
  • Release date: March 2009
  • Publisher(s): Newnes
  • ISBN: 9780080949482