Skip to Content
OpenCV 4 with Python Blueprints - Second Edition
book

OpenCV 4 with Python Blueprints - Second Edition

by Dr. Menua Gevorgyan, Michael Beyeler (USD), Arsen Mamikonyan, Michael Beyeler
March 2020
Intermediate to advanced
366 pages
9h 8m
English
Packt Publishing
Content preview from OpenCV 4 with Python Blueprints - Second Edition

Using point matching with optic flow

An alternative to using rich features is using optic flow. Optic flow is the process of estimating motion between two consecutive image frames by calculating a displacement vector. A displacement vector can be calculated for every pixel in the image (dense) or only for selected points (sparse).

One of the most commonly used techniques for calculating dense optic flow is the Lukas-Kanade method. It can be implemented in OpenCV with a single line of code, by using the cv2.calcOpticalFlowPyrLK function.

But before that, we need to select some points in the image that are worth tracking. Again, this is a question of feature selection. If we are interested in getting an exact result for only a few highly salient ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

OpenCV with Python Blueprints

OpenCV with Python Blueprints

Michael Beyeler, Michael Beyeler (USD)
OpenCV 3 Computer Vision with Python Cookbook

OpenCV 3 Computer Vision with Python Cookbook

Aleksei Spizhevoi, Aleksandr Rybnikov
Mastering OpenCV 4 with Python

Mastering OpenCV 4 with Python

Alberto Fernández Villán

Publisher Resources

ISBN: 9781789801811Supplemental Content