Tracking faces
The challenge in using OpenCV's Haar cascade classifiers is not just getting a tracking result; it is getting a series of sensible tracking results at a high frame rate. One kind of common sense that we can enforce is that certain tracked objects should have a hierarchical relationship, one being located relative to the other. For example, a nose should be in the middle of a face. By attempting to track both a whole face and parts of a face, we can enable application code to do more detailed manipulations and to check how good a given tracking result is. A face with a nose is a better result than one without. At the same time, we can support some optimizations, such as only looking for faces of a certain size and noses in certain ...
Get OpenCV: Computer Vision Projects with Python now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.