Putting it all together
To run our app, we will need to execute the main function routine (in chapter6.py
). It loads the data, trains the classifier, evaluates its performance, and visualizes the result.
But first, we need to import all the relevant modules and set up a main function:
import numpy as np import matplotlib.pyplot as plt from datasets import gtsrb from classifiers import MultiClassSVM def main():
Then, the goal is to compare classification performance across settings and feature extraction methods. This includes running the task with both classification strategies, one-vs-all and one-vs-one, as well as preprocessing the data with a list of different feature extraction approaches:
strategies = ['one-vs-one', 'one-vs-all']features = [None, ...
Get OpenCV: Computer Vision Projects with Python now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.