### Solution to Application Example 5.6

i) The virtual resistor is only activated at harmonic frequencies; therefore, the 5th harmonic component of the injected current in the capacitor is

$\begin{array}{l}{\stackrel{~}{I}}_{C,5}={\stackrel{~}{I}}_{C,5}^{\mathrm{due}NL}+{\stackrel{~}{I}}_{C,5}^{\mathrm{due}sys},\\ {\stackrel{~}{I}}_{C,5}^{\mathrm{due}NL}=\frac{{Z}_{sys,5}}{{Z}_{sys,5}+{Z}_{C,5}+{R}_{vir}}{\stackrel{~}{I}}_{NL,5},\\ =\frac{0.06+j0.2074}{0.06+j0.2074-j0.408+0.5}{\stackrel{~}{I}}_{NL,5},\\ =\frac{0.06+j0.2074}{0.56-j0.2}{\stackrel{~}{I}}_{NL,5}=\frac{0.2159\angle 73.87°}{0.595\angle -19.65°}{\stackrel{~}{I}}_{NL,5},\\ =\left(0.363\angle 93.52°\right){\stackrel{~}{I}}_{NL,5},\\ =\left(0.363\angle 93.52°\right)\left(\sqrt{2}\left(0.3\right)\angle 0°\right)\mathrm{A}\\ =\sqrt{2}\left(0.109\right)\angle 93.52°\mathrm{A}.\\ {\stackrel{~}{I}}_{C,5}^{\mathrm{due}sys}=\frac{1}{{Z}_{sys,5}+{Z}_{C,5}+{R}_{vir}}{\stackrel{~}{V}}_{sys,5},\\ =\frac{1}{0.595\angle -19.65°}{\stackrel{~}{V}}_{sys,5}=\left(1.68\angle 19.65°\right){\stackrel{~}{V}}_{sys,5},\\ =\left(1.68\angle 19.65°\right)\left(\sqrt{2}\left(3\right)\angle 0°\right)\mathrm{A},\\ =\sqrt{2}\left(5.4\right)\angle 19.65°\mathrm{A}.\\ ⇒⇒{\stackrel{~}{\mathrm{I}}}_{C,5}={\stackrel{~}{I}}_{C,5}^{\mathrm{due}NL}+{\stackrel{~}{I}}_{C,5}^{\mathrm{due}sys},\\ =\left(\sqrt{2}\left(0.109\right)\angle 93.52°\right)+\left(\sqrt{2}\left(5.4\right)\angle 19.65°\right)\mathrm{A},\\ =\sqrt{2}\left(5.09+j1.93\right)=\sqrt{2}\left(5.44\right)\angle 20.77°\mathrm{A}\text{.}\end{array}$

(E5.6-1)

Note that the magnitude ...

Get Power Quality in Power Systems and Electrical Machines, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.