Skip to Content
Practical Data Science with Python
book

Practical Data Science with Python

by Nathan George
September 2021
Beginner to intermediate
620 pages
15h 30m
English
Packt Publishing
Content preview from Practical Data Science with Python

14

Optimizing Models and Using AutoML

So far, we've looked at a few machine learning (ML) models for classification and regression: simple linear models (linear regression and logistic regression), k-nearest neighbors (KNN), and Naïve Bayes for classification. As we will see in these next few chapters, there are other models that are commonly used in ML and data science. This chapter will cover how to choose between models and how to optimize models. Specifically, we'll cover:

  • Hyperparameter optimization with random, grid, and Bayesian searches
  • Using learning curves to optimize the amount of data needed and diagnose ML models
  • Optimizing the number of features with recursive feature selection
  • Using the pycaret AutoML Python package

Let's get ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Science Projects with Python - Second Edition

Data Science Projects with Python - Second Edition

Stephen Klosterman
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781801071970Supplemental Content