Chapter 6: Running Hyperparameter Tuning at Scale

Hyperparameter tuning or hyperparameter optimization (HPO) is a procedure that finds the best possible deep neural network structures, types of pretrained models, and model training process within a reasonable computing resource constraint and time frame. Here, hyperparameter refers to parameters that cannot be changed or learned during the ML training process, such as the number of layers inside a deep neural network, the choice of a pretrained language model, or the learning rate, batch size, and optimizer of the training process. In this chapter, we will use HPO as a shorthand to refer to the process of hyperparameter tuning and optimization. HPO is a critical step for producing a high-performance ...

Get Practical Deep Learning at Scale with MLflow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.