O'Reilly logo

Practical Probabilistic Programming by Avi Pfeffer

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 9. The three rules of probabilistic inference

This chapter covers

  • Three important rules for working with probabilistic models:
    • The chain rule, which lets you build complex models out of simple components
    • The total probability rule, which lets you simplify a complex probabilistic model to answer simple queries
    • Bayes’ rule, with which you can draw conclusions about causes from observations of their effects
  • The basics of Bayesian modeling, including how to estimate model parameters from data and use them to predict future cases

In part 2 of this book, you learned all about writing probabilistic programs for a variety of applications. You know that probabilistic programming systems use inference algorithms operating on these programs ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required