Chapter 1. Exploratory Data Analysis
This chapter focuses on the first step in any data science project: exploring the data.
Classical statistics focused almost exclusively on inference, a sometimes complex set of procedures for drawing conclusions about large populations based on small samples. In 1962, John W. Tukey (Figure 1-1) called for a reformation of statistics in his seminal paper “The Future of Data Analysis” [Tukey-1962]. He proposed a new scientific discipline called data analysis that included statistical inference as just one component. Tukey forged links to the engineering and computer science communities (he coined the terms bit, short for binary digit, and software), and his original tenets are surprisingly durable and form part of the foundation for data science. The field of exploratory data analysis was established with Tukey’s 1977 now-classic book Exploratory Data Analysis [Tukey-1977]. Tukey presented simple plots (e.g., boxplots, scatterplots) that, along with summary statistics (mean, median, quantiles, etc.), help paint a picture of a data set.
With the ready availability of computing power and expressive data analysis software, exploratory data analysis has evolved well beyond its original scope. Key drivers of this discipline have been the rapid development of new technology, access to more and bigger data, and the greater use of quantitative analysis in a variety of disciplines. David Donoho, professor of statistics at Stanford University and former ...