A1. A. O. L. Atkin and F. Morain, *Elliptic curves and primality proving*, Math. Comp. **61** (1993), pp. 29–68.

A2. B. C. Berndt, *Ramanujan's Notebooks, Part IV*, Springer-Verlag, New York, 1994.

A3. B. C. Berndt, R. Evans and K. S. Williams, *Gauss and Jacobi Sums*, Wiley, New York, 1998.

A4. J. Brillhart and P. Morton, *Class numbers of quadratic fields, Hasse invariants of elliptic curves, and the supersingular polynomial*, J. Number Theory **106** (2004), pp. 79–111.

A5. P. Bussotti, *From Fermat to Gauss: Infinite Descent and Methods of Reduction in Number Theory*, Dr. Erwin Rauner Verlag, Augsburg, 2006.

A6. B. Cho, *Primes of the form x*^{2} + *ny*^{2} *with conditions x* ≡ 1 mod *N, y* ≡ 0 mod *N*, J. Number Theory **130** (2010), pp. 852–861.

A7. D. Cox, *Galois Theory*, 2nd edition, Wiley, Hoboken, New Jersey, 2012.

A8. D. Cox, J. McKay and P. Stevenhagen, *Principal moduli and class fields*, Bull. London Math. Soc. **26** (2004), pp. 3–12.

A9. W. Duke, *Continued fractions and modular functions*, Bull. Amer. Math. Soc. **42** (2005), pp. 137–162.

A10. A. Gee, *Class fields by Shimura reciprocity*, J. Théor. Nombres Bordeaux **11** (1999), pp. 45–72.

A11. A. Gee and P. Stevenhagen, *Generating class fields using Shimura reciprocity*, in *Algorithmic Number Theory* (*Portland, OR, 1998*), Lecture Notes in Comput. Sci. **1423**, Springer-Verlag, Berlin, 1998, pp. 441–453.

A12. B. Gross, *An elliptic curve test for Mersenne primes*, J. Number Theory **110** (2005), pp. 114–119.

A13. F. Hajir ...

Start Free Trial

No credit card required