Bayesian versus Frequentist
The preceding example was almost too easy. In practice, we can hardly ever truly count the number of ways something can happen. For example, let's say that we want to know the probability of a random person smoking cigarettes at least once a day. If we wanted to approach this problem using the classical way (the previous formula), we would need to figure out how many different ways a person is a smoker—someone who smokes at least once a day—which is not possible!
When faced with such a problem, two main schools of thought are considered when it comes to calculating probabilities in practice: the Frequentist approach and the Bayesian approach. This chapter will focus heavily on the Frequentist approach, while the subsequent ...
Get Principles of Data Science - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.