List of Figures
1.1 (SEE COLOR INSERT) Identification is the task of using input-output data to
build a model: a mathematical abstraction of the process...............................................2
1.2 Applications of models in process systems engineering. ...............................................4
1.3 Temperature response of a reactor to changes in coolant flow rate is used in iden-
tification of the reactor system........................................................................................4
1.4 Plot of RH and Temperature ...........................................................................................6
1.5 Two approaches to modeling: first-principles vs. experimental (empirical). .................8
1.6 (SEE COLOR INSERT) The system being identified consists of the true process
and additional elements.................................................................................................13
1.7 (SEE COLOR INSERT) A generic iterative procedure for System Identification. ...20
1.8 A standard sampled-data system. .................................................................................20
1.9 System Identification involves application of concepts from four broad fields in
engineering, mathematics and statistics........................................................................26
2.1 The best fit and the error in the parameter estimates depend on the SNR. ..................34
2.2 Training data and order determination in Example 2.4. ...............................................36
2.3 Cross-validation of polynomial models in Example 2.4. .............................................36
2.4 Schematic of the liquid level system discussed in Section 2.4. ....................................38
2.5 Time-trends and spectra of flow and level measurements in the identification of
the liquid level system. .................................................................................................39
2.6 Impulse response estimates of the liquid level system. ................................................42
2.7 Step response estimates of the liquid level system. .....................................................43
2.8 Comparing one-step ahead predictions (deviations from steady-state) of the iden-
tified models on the training data. ................................................................................46
2.9 Correlation between residuals and lagged inputs for the output-error (bottom) and
equation-error (top) models. ........................................................................................47
2.10 Correlation analysis of residuals obtained from the best equation-error model. .........48
2.11 Auto-correlation function of the residuals from the output-error model. ....................49
2.12 Infinite-step ahead predictions from the output-error model on the test data set..........49
2.13 Plot of (log) Hankel singular values and correlation functions from the state-space
model. ...........................................................................................................................51
3.1 The inputs and outputs of a model are in general different from the physical inputs
and outputs of a process. ..............................................................................................57
3.2 (SEE COLOR INSERT) Types of models. ................................................................58
3.3 (SEE COLOR INSERT) Four broad categories of empirical models. ......................59
3.4 (SEE COLOR INSERT) Composite model from identification. ...............................66
4.1 Impulse response of an LTI system. .............................................................................69
4.2 Schematic depicting the derivation of a convolution operation. ..................................69
4.3 Impulse responses of different systems. .......................................................................70
4.4 Typical step response of a first-order LTI system. .......................................................74
4.5 Bode plots for the first-order system in Example 4.5. .................................................78
4.6 Bode plot for the pure delay system of Example 4.6 with D = 2. ...............................78
4.7 Two different ways of realizing a state-space representation. ......................................89
4.8 Snapshot of the input-output data. .............................................................................102
xxvii
Get Principles of System Identification now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.