Skip to Main Content
Privacy-Preserving Machine Learning
book

Privacy-Preserving Machine Learning

by Di Zhuang, Dumindu Samaraweera, Morris Chang
May 2023
Intermediate to advanced content levelIntermediate to advanced
336 pages
10h 3m
English
Manning Publications
Content preview from Privacy-Preserving Machine Learning

2 Differential privacy for machine learning

This chapter covers

  • What differential privacy is
  • Using differential privacy mechanisms in algorithms and applications
  • Implementing properties of differential privacy

In the previous chapter, we investigated various privacy-related threats and vulnerabilities in machine learning (ML) and concepts behind privacy-enhancing technologies. From now on, we will focus on the details of essential and popular privacy-enhancing technologies. The one we will discuss in this chapter and the next is differential privacy (DP).

Differential privacy is one of the most popular and influential privacy protection schemes used in applications today. It is based on the concept of making a dataset robust enough that any ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Graph-Powered Machine Learning

Graph-Powered Machine Learning

Alessandro Negro
Practicing Trustworthy Machine Learning

Practicing Trustworthy Machine Learning

Yada Pruksachatkun, Matthew Mcateer, Subho Majumdar

Publisher Resources

ISBN: 9781617298042Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentPurchase Link