December 2017
Intermediate to advanced
412 pages
12h 44m
English
Activation functions, neuron/perceptron
binary threshold activation function
linear activation function
rectified linear unit
sigmoid activation function
SoftMax activation function
tanh activation function
AdadeltaOptimizer
AdagradOptimizer
AdamOptimizer
Auto encoders
architecture
cases
combined classification network, class prediction
denoising auto-encoder implementation
element wise activation function
hidden layer
KL divergence
learning rule of model
multiple hidden layers
network, class prediction
sparse
unsupervised ANN
Backpropagation
convolution layer
for gradient computation
cost derivative
cost function
cross-entropy cost, SoftMax activation layer
forward pass and backward pass
hidden layer unit
independent sigmoid output units
multi-layer neural network