Skip to Main Content
Programming Machine Learning
book

Programming Machine Learning

by Paolo Perrotta
March 2020
Beginner to intermediate content levelBeginner to intermediate
342 pages
8h 38m
English
Pragmatic Bookshelf
Content preview from Programming Machine Learning

Adding More Dimensions

In the previous chapter, we coded a gradient descent-based version of our learning program. This souped-up program can potentially scale to complex models with more than one variable.

In a moment of weakness, we mentioned that opportunity to our friend Roberto. That was a mistake. Now Roberto is all pumped up about forecasting pizza sales from a bunch of different input variables besides reservations, such as the weather, or the number of tourists in town.

This is going to be more work for us—and yet, we can’t blame Roberto for wanting to add variables to the model. After all, the more variables we consider, the more likely it is that we’ll get accurate predictions of pizza sales.

Let’s start with a souped-up version of ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Machine Learning Algorithms - Second Edition

Mastering Machine Learning Algorithms - Second Edition

Giuseppe Bonaccorso
Practical Machine Learning for Computer Vision

Practical Machine Learning for Computer Vision

Valliappa Lakshmanan, Martin Görner, Ryan Gillard

Publisher Resources

ISBN: 9781680507706Errata Page