Running on Convolutions

Here is a convolutional neural network for CIFAR-10—all of it:

 import​ ​numpy​ ​as​ ​np
 from​ ​keras.models​ ​import​ Sequential
 from​ ​keras.layers​ ​import​ Conv2D, Dropout, Dense
 from​ ​keras.layers​ ​import​ BatchNormalization, Flatten
 from​ ​keras.optimizers​ ​import​ Adam
 from​ ​keras.utils​ ​import​ to_categorical
 from​ ​keras.datasets​ ​import​ cifar10
 
 (X_train_raw, Y_train_raw), (X_test_raw, Y_test_raw) = cifar10.load_data()
 X_train = X_train_raw / 255
 X_test_all = X_test_raw / 255
 X_validation, X_test = np.split(X_test_all, 2)
 Y_train = to_categorical(Y_train_raw)
 Y_validation, Y_test = np.split(to_categorical(Y_test_raw), 2)
 
 model = Sequential()
 
 model.add(Conv2D(16, ...

Get Programming Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.