Case study – logistic regression service

As an illustration of the architecture covered previously, let us look at an example of a prediction service that implements a logistic regression model. The model is both trained and scores new data using information passed through URLs (either through the web browser or invoking curl on the command line), and illustrates how these components fit together. We will also examine how we can interactively test these components using the same IPython notebooks as before, while also allowing us to seamlessly deploying the resulting code in an independent application.

Our first task is to set up the databases used to store the information used in modeling, as well as the result and model parameters.

Setting up ...

Get Python: Advanced Predictive Analytics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.