Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Exponential smoothing

Exponential smoothing is a low-pass filter that aims to remove noise. In this recipe, we will apply single and double exponential smoothing, as shown by the following equations:

Exponential smoothing

Single exponential smoothing (6.3) requires the smoothing factor α, where 0 < α < 1. Double exponential smoothing (6.4 and 6.5) attempts to handle trends in data via the trend smoothing factor β, where 0 < β < 1.

We will also take a look at rolling deviations of wind speed, which are similar to z-scores, but they are applied to a rolling window. Smoothing is associated with regression, although the goal of smoothing is to get rid of noise. Nevertheless, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content