Skip to Content
Python Data Analysis Cookbook
book

Python Data Analysis Cookbook

by Ivan Idris
July 2016
Beginner to intermediate
462 pages
9h 14m
English
Packt Publishing
Content preview from Python Data Analysis Cookbook

Implementing a basic terms database

As you know, natural language processing has many applications:

  • Full text search as implemented by commercial and open source search engines
  • Clustering of documents
  • Classification, for example to determine the type of text or the sentiment in the context of a product review

To perform these tasks, we need to calculate features such as TF-IDF scores (refer to Stemming, lemmatizing, filtering, and TF-IDF scores). Especially, with large datasets, it makes sense to store the features for easy processing. Search engines use inverted indices, which map words to web pages. This is similar to the association table pattern (refer to Implementing association tables).

We will implement the association table pattern with three ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning Cookbook - Second Edition

Python Machine Learning Cookbook - Second Edition

Giuseppe Ciaburro, Prateek Joshi
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins
Python Data Science Essentials - Third Edition

Python Data Science Essentials - Third Edition

Alberto Boschetti, Luca Massaron, Pietro Marinelli, Matteo Malosetti

Publisher Resources

ISBN: 9781785282287Supplemental Content