Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Working with date and time objects

Python supports date and time handling in the date time and time modules from the standard library:

>>> import datetime
>>> datetime.datetime(2000, 1, 1)
datetime.datetime(2000, 1, 1, 0, 0)

Sometimes, dates are given or expected as strings, so a conversion from or to strings is necessary, which is realized by two functions: strptime and strftime, respectively:

>>> datetime.datetime.strptime("2000/1/1", "%Y/%m/%d")
datetime.datetime(2000, 1, 1, 0, 0)
>>> datetime.datetime(2000, 1, 1, 0, 0).strftime("%Y%m%d")
'20000101'

Real-world data usually comes in all kinds of shapes and it would be great if we did not need to remember the exact date format specifies for parsing. Thankfully, Pandas abstracts away a lot of ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link