Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Summary

Quite a long chapter! Isn't it? But, this chapter will form the core of anything you learn and implement in data-science. Let us wrap-up the chapter by summarizing the key takeaways from the chapter:

  • Data can be sub-setted in a variety of ways: by selecting a column, selecting few rows, selecting a combination of rows and columns; using .ix method and [ ] method, and creating new columns.
  • Random numbers can be generated in a number of ways. There are many methods like randint(), raandarrange() in the random library of numpy. There are also methods like shuffle and choice to randomly select an element out of a list. Randn() and uniform() are used to generate random numbers following normal and uniform probability distributions. Random numbers ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link