Implementing clustering using Python

Now, as we understand the mathematics behind the k-means clustering better, let us implement it on a dataset and see how to glean insights from the performed clustering.

The dataset we will be using for this is about wine. Each observation represents a separate sample of wine and has information about the chemical composition of that wine. Some wine connoisseur painstakingly analyzed various samples of wine to create this dataset. Each column of the dataset has information about the composition of one chemical. There is one column called quality as well, which is based on the ratings given by the professional wine testers.

The prices of wines are generally decided by the ratings given by the professional testers. ...

Get Python: Data Analytics and Visualization now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.