Skip to Content
Python: Data Analytics and Visualization
book

Python: Data Analytics and Visualization

by Phuong Vo.T.H, Martin Czygan, Ashish Kumar, Kirthi Raman
March 2017
Beginner to intermediate
866 pages
18h 4m
English
Packt Publishing
Content preview from Python: Data Analytics and Visualization

Some best practices for visualization

The first important step one can take to make a great visualization is to know what is the goal behind the effort. How does one know if the visualization has a purpose? It is also very important to know who the audience is and how this will help them.

Once the answers to these questions are known, and the purpose of visualization is well understood, the next challenge is to choose the right method to present it. The most commonly-used types of visualization could further be categorized according to the following:

  • Comparison and ranking
  • Correlation
  • Distribution
  • Location-specific or geodata
  • Part-to-whole relationships
  • Trends over time

Comparison and ranking

Comparing and ranking can be done in more than one way, but ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Practical Python Data Visualization: A Fast Track Approach To Learning Data Visualization With Python

Ashwin Pajankar
Python: End-to-end Data Analysis

Python: End-to-end Data Analysis

Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm Persson, Luiz Felipe Martins

Publisher Resources

ISBN: 9781788290098Supplemental ContentPurchase Link