Working with categorical and textual data
Typically, you'll find yourself dealing with two main kinds of data: categorical and numerical. Numerical data, such as temperature, amount of money, days of usage, or house number, can be composed of either floating point numbers (like 1.0, -2.3, 99.99, …) or integers (like -3, 9, 0, 1, …). Each value that the data can assume has a direct relation with others since they're comparable. In other words, you can say that a feature with a value of 2.0 is greater (actually, it is double) than a feature that assumes a value of 1.0. This type of data is very well-defined and comprehensible, with binary operators such as equal, greater, and less.
The other type of data you might see in your career is the categorical ...
Get Python Data Science Essentials now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.