Data processing with NumPy
Having introduced the essential pandas commands to upload and preprocess your data in memory completely, in smaller batches, or even in single data rows, at this point of the data science pipeline you'll have to work on it in order to prepare a suitable data matrix for your supervised and unsupervised learning procedures.
As a best practice, we advise that you divide the task between a phase of your work when your data is still heterogeneous (a mix of numerical and symbolic values) and another phase when it is turned into a numeric table of data. A table of data, or matrix, is arranged in rows that represent your examples, and columns that contain the characteristic observed values of your examples, which are your variables. ...
Get Python Data Science Essentials - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.