Cleaning up data from outliers
This recipe describes how to deal with datasets coming from the real world and how to clean them before doing any visualization.
We will present a few techniques, which are different in essence but have the same goal, to get the data cleaned.
Cleaning, however, should not be fully automatic. We need to understand the data as given and be able to understand what the outliers are and what the data points represent before we apply any of the robust modern algorithms made to clean the data. This is not something that can be defined in a recipe because it relies on vast areas such as statistics, knowledge of the domain, and a good eye (and then some luck).
Getting ready
We will use the standard Python modules we already know ...
Get Python Data Visualization Cookbook - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.