April 2017
Intermediate to advanced
406 pages
10h 15m
English
For AlphaGo using policy gradients, the network was set up to play games against itself. It did so with a reward of 0 for every time step until the final one where the game is either won or lost, giving a reward of 1 or -1. This final reward is then applied to every time step in the network, and the network is trained using policy gradients in the same way as our Tic-tac-toe example. To prevent overfitting, games were played against a randomly selected previous version of the network. If the network constantly plays against itself, the risk is it could end up with some very niche strategies, which would not work against varied opponents, a local minima of sorts.
Building the initial supervised learning network that predicted ...