Dynamic games
Now that we have learned the world's simplest game, let's try learning something a bit more dynamic. The cart pole task is a classic reinforcement learning problem. The agent must control a cart, on which is balanced a pole, attached to the cart via a joint. At every step, the agent can choose to move the cart left or right, and it receives a reward of 1 every time step that the pole is balanced. If the pole ever deviates by more than 15 degrees from upright, then the game ends:
To run the cart pole task, we will use OpenAIGym, an open source project set up in 2015, which gives a way to run reinforcement ...
Get Python Deep Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.