Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Actor-critic methods

Approaches to reinforcement learning can be divided into three broad categories:

  • Value-based learning: This tries to learn the expected reward/value for being in a state. The desirability of getting into different states can then be evaluated based on their relative value. Q-learning in an example of value-based learning.
  • Policy-based learning: In this, no attempt is made to evaluate the state, but different control policies are tried out and evaluated based on the actual reward from the environment. Policy gradients are an example of that.
  • Model-based learning: In this approach, which will be discussed in more detail later in the chapter, the agent attempts to model the behavior of the environment and choose an action based ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content