Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Popular shallow machine learning techniques

Anomaly detection is not new and many techniques have been well studied. The modeling can be divided and combined into two phases: data modeling and detection modeling.

Data modeling

Data modeling generally consists of grouping available data in the granularity of observations we would like to detect such that it contains all of the necessary information we would like the detection model to consider.

We can identify three major types of data modeling techniques:

Point anomaly: This is similar to singular outlier detection. Each row in our dataset corresponds to an independent observation. The goal is to classify each observation as "normal" or "anomaly" or, better, to provide a numerical anomaly score. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content