- Let's start with importing all the libraries, as follows:
from keras.datasets import cifar10from keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activation, Flattenfrom keras.layers import Conv2D, MaxPooling2Dfrom keras.optimizers import Adamfrom keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint
- We will be using the cifar10 dataset for our experiments. We load and pre-process the data like this:
(X_train, y_train), (X_test, y_test) = cifar10.load_data()X_train = X_train.astype('float32')/255.X_test = X_test.astype('float32')/255.n_classes = 10y_train = keras.utils.to_categorical(y_train, n_classes)y_test = keras.utils.to_categorical(y_test, ...