- We start by importing all libraries as follows:
from keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activation, Flattenfrom keras.layers import Conv2D, MaxPooling2Dfrom keras.optimizers import Adamfrom sklearn.model_selection import train_test_splitfrom keras.utils import to_categoricalfrom keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpointfrom keras.datasets import cifar10
- Next, we load the Cifar10 dataset and pre-process it:
(X_train, y_train), (X_test, y_test) = cifar10.load_data()validation_split = 0.1X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=validation_split, random_state=SEED)X_train = X_train.astype('float32')X_train /=255.X_val = X_val.astype('float32') ...