Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Backpropagation

So far, we have learned how to update the weights of 1-layer networks with gradient descent. We started by comparing the output of the network (that is, the output of the output layer) with the target value, and then we updated the weights accordingly. But, in a multi-layer network, we can only apply this technique for the weights that connect the final hidden layer to the output layer. That's because we don't have any target values for the outputs of the hidden layers. What we'll do instead is calculate the error in the final hidden layer and estimate what it would be in the previous layer. We'll propagate that error back from the last layer to the first layer; hence, we get the name backpropagation. Backpropagation is one ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content