Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Linear regression

We have already introduced linear regression in Chapter 1, Machine Learning – an Introduction. To recap, regarding utilization of the vector notation, the output of a linear regression algorithm is a single value, y , and is equal to the dot product of the input values x and the weights w: . As we now know, linear regression is a special case of a neural network; that is, it's a single neuron with the identity activation function. In this section, we'll learn how to train linear regression with gradient descent and, in the following sections, we'll extend it to training more complex models. You can see how the gradient descent ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content