Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Backpropagation through time

Backpropagation through time is the typical algorithm we use to train recurrent networks (http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf). As the name suggests, it's based on the backpropagation algorithm we discussed in Chapter 2, Neural Networks.

The main difference between regular backpropagation and backpropagation through time is that the recurrent network is unfolded through time for a certain number of time steps (as illustrated in the preceding diagram). Once the unfolding is complete, we end up with a model that is quite similar to a regular multilayer feedforward network. That is, one hidden layer of that network represents one step through time. The only differences are that each ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content