Skip to Content
Python Deep Learning - Second Edition
book

Python Deep Learning - Second Edition

by Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
January 2019
Intermediate to advanced
386 pages
11h 13m
English
Packt Publishing
Content preview from Python Deep Learning - Second Edition

Value function approximations

So far, we've worked under the assumption that the state- and action- value functions are tabular. However, in tasks with large value spaces, such as computer games, it's impossible to store all possible values in a table. Instead, we'll try to approximate the value functions. To formalize this, let's think of the tabular value functions, and , as actual functions with as many parameters as the number of table cells. As the state space grows, so does the number of parameters, to the point where it becomes impossible ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning

Python Deep Learning

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Publisher Resources

ISBN: 9781789348460Supplemental Content