Chapter 6. Bayesian Methods

Bayesian inference is a different paradigm for statistics; it is not a method or algorithm such as cluster finding or linear regression. It stands next to classical statistical analysis. Everything that we have done so far in this book, and everything that you can do in classical (or frequentist) statistical analysis, you can do in Bayesian statistics. The main difference between frequentist (classical) and Bayesian statistics is that while frequentist assumes that the model parameters are fixed, Bayesian assumes that they have a range, a distribution. Thus, from the frequentist approach, it is easy to create point estimates—mean, variance, or fixed model parameters—directly from the data. The point estimates are unique ...

Get Python: End-to-end Data Analysis now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.