How to do it...

To proceed with the recipe, let's import pandas and then create a toy dataframe with two variables, each one containing a date and time in different time zones:

  1. Import pandas:
import pandas as pd
  1. Let's create a toy dataframe with one variable with values in different time zones:
df = pd.DataFrame()df['time1'] = pd.concat([    pd.Series(        pd.date_range(            start='2015-06-10 09:00', freq='H', periods=3,            tz='Europe/Berlin')),    pd.Series(        pd.date_range(            start='2015-09-10 09:00', freq='H', periods=3,             tz='US/Central'))    ], axis=0)
  1. Now, let's add another datetime variable to the dataframe, which also contains values in different time zones, and then display the resulting dataframe:
df['time2'] = pd.concat([    pd.Series( pd.date_range( ...

Get Python Feature Engineering Cookbook now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.