Appendix B. BSM Option Class

Class Definition

The following presents a class definition for a European call option in the Black-Scholes-Merton (1973) model. The class-based implementation is an alternative to the one based on functions as presented in “Python Script”:

#
# Valuation of European call options in Black-Scholes-Merton model
# incl. vega function and implied volatility estimation
# -- class-based implementation
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
from math import log, sqrt, exp
from scipy import stats


class bsm_call_option(object):
    ''' Class for European call options in BSM model.

    Attributes
    ==========
    S0: float
        initial stock/index level
    K: float
        strike price
    T: float
        maturity (in year fractions)
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term

    Methods
    =======
    value: float
        returns the present value of call option
    vega: float
        returns the vega of call option
    imp_vol: float
        returns the implied volatility given option quote
    '''

    def __init__(self, S0, K, T, r, sigma):
        self.S0 = float(S0)
        self.K = K
        self.T = T
        self.r = r
        self.sigma = sigma

    def value(self):
        ''' Returns option value.
        '''
        d1 = ((log(self.S0 / self.K) +
               (self.r + 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        d2 = ((log(self.S0 / self.K) +
               (self.r - 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0) -
                 self.K * exp(-self.r * self.T) * stats.norm.

Get Python for Finance, 2nd Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.